const options = {method: 'GET', headers: {Authorization: 'Bearer <token>'}};
fetch('https://api.supermemory.ai/v3/documents/processing', options)
.then(res => res.json())
.then(res => console.log(res))
.catch(err => console.error(err));{
"documents": [
{
"id": "doc_123",
"customId": "custom_123",
"title": "My Document",
"type": "text",
"status": "extracting",
"createdAt": "2024-12-27T12:00:00Z",
"updatedAt": "2024-12-27T12:01:00Z",
"metadata": {},
"containerTags": [
"sm_project_default"
]
}
],
"totalCount": 5
}Get documents that are currently being processed
const options = {method: 'GET', headers: {Authorization: 'Bearer <token>'}};
fetch('https://api.supermemory.ai/v3/documents/processing', options)
.then(res => res.json())
.then(res => console.log(res))
.catch(err => console.error(err));{
"documents": [
{
"id": "doc_123",
"customId": "custom_123",
"title": "My Document",
"type": "text",
"status": "extracting",
"createdAt": "2024-12-27T12:00:00Z",
"updatedAt": "2024-12-27T12:01:00Z",
"metadata": {},
"containerTags": [
"sm_project_default"
]
}
],
"totalCount": 5
}Bearer authentication header of the form Bearer <token>, where <token> is your auth token.
Successfully retrieved processing documents
List of documents currently being processed
Show child attributes
Unique identifier of the document.
22"acxV5LHMEsG2hMSNb4umbn"
Optional custom ID of the document. This could be an ID from your database that will uniquely identify this document.
255"mem_abc123"
Title of the document
"Introduction to Machine Learning"
Type of the document
text, pdf, tweet, google_doc, google_slide, google_sheet, image, video, notion_doc, webpage, onedrive "text"
Status of the document
unknown, queued, extracting, chunking, embedding, indexing, done, failed "done"
Creation timestamp
"1970-01-01T00:00:00.000Z"
Last update timestamp
"1970-01-01T00:00:00.000Z"
Optional metadata for the document. This is used to store additional information about the document. You can use this to store any additional information you need about the document. Metadata can be filtered through. Keys must be strings and are case sensitive. Values can be strings, numbers, or booleans. You cannot nest objects.
{
"category": "technology",
"isPublic": true,
"readingTime": 5,
"source": "web",
"tag_1": "ai",
"tag_2": "machine-learning"
}
Optional tags this document should be containerized by. This can be an ID for your user, a project ID, or any other identifier you wish to use to group documents.
["user_123", "project_123"]
Total number of processing documents
5
Was this page helpful?